Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy.
نویسندگان
چکیده
Light scattering by brain tissue and phototoxicity are major obstacles to the use of high-resolution optical imaging and photo-activation ('uncaging') of bioactive compounds from inactive ('caged') precursors in intact and semi-intact nervous systems. Optical methods based on 2-photon excitation promise to reduce these obstacles (Denk, 1994; Denk et al., 1990, 1994). Here we show a range of imaging modes based on 2-photon laser scanning microscopy (TPLSM) as applicable to problems in neuroscience. Fluorescence images were taken of neurons labeled with ion-sensitive and voltage-sensitive dyes in invertebrate ganglia, mammalian brain slices, and from the intact mammalian brain. Scanning photochemical images with whole-cell current detection (Denk, 1994) show how the distribution of neurotransmitter receptors on the surface of specific cells can be mapped. All images show strong optical sectioning and usable images can be obtained at depths greater than 100 microns below the surface of the preparation.
منابع مشابه
In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
We applied two-photon laser-scanning microscopy (TPLSM) to motion-sensitive visual interneurons of the fly to study Ca(2+) dynamics in vivo at a higher spatial and temporal resolution than possible with conventional fluorescence microscopy. Based on a custom-built two-photon microscope, we performed line scans to measure changes in presynaptic Ca(2+) concentrations elicited by visual stimulatio...
متن کاملHigh-speed multineuron calcium imaging using Nipkow-type confocal microscopy.
Conventional confocal and two-photon microscopy scan the field of view sequentially with single-point laser illumination. This raster-scanning method constrains video speeds to tens of frames per second, which are too slow to capture the temporal patterns of fast electrical events initiated by neurons. Nipkow-type spinning-disk confocal microscopy resolves this problem by the use of multiple la...
متن کاملApplication of multiline two-photon microscopy to functional in vivo imaging.
High spatial resolution and low risks of photodamage make two-photon laser-scanning microscopy (TPLSM) the method of choice for biological imaging. However, the study of functional dynamics such as neuronal calcium regulation often also requires a high temporal resolution. Hitherto, acquisition speed is usually increased by line scanning, which restricts spatial resolution to structures along a...
متن کاملHigh-throughput spatial light modulation two-photon microscopy for fast functional imaging.
The optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of hol...
متن کاملNeural transplant staining with DiI and vital imaging by 2-photon laser-scanning microscopy.
We are developing a multielectrode silicon "neuroprobe" for maintaining a long-term, specific, two-way electrical interface with nervous tissue. Our approach involves trapping a neuron (from an embryonic rat hippocampus) in a small well with a stimulation/recording electrode at its base. The well is covered with a grillwork through which the neuron's processes are allowed to grow, making synapt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 54 2 شماره
صفحات -
تاریخ انتشار 1994